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The mathematical model

» Theory of thermoelastic materials with voids was developed by

@ S. C. Cowin and J. W. Nunziato - Linear elastic materials with voids, J.
Elasticity, vol. 13, pp. 125-147, 1983

@ J. W. Nunziato and S. C. Cowin - A nonlinear theory of elastic
materials with voids, Arch. Rat. Mech. Anal., vol. 72, pp. 175-201, 1979

@ D. Iesan - A theory of thermoelastic materials with voids, Acta
Mechanica, vol. 60, pp. 67-89, 1986

in order to describe deformation of elastic bodies with small voids or
vacuous pores which are distributed throughout the material. Such theory is
one of the simple extensions of the classical theory of elasticity for the
treatment of porous solids in which the matrix material is elastic and the
interstices are void of material.

%F
* H *
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The theory of thermoporoelastic materials was intensively studied in the last
years. An overview state of art can be found in the following books:

@ R. De Boer - Theory of porous media: Highlights in historical
development and current state. Springer-Verlag, Berlin, 1999;

@ D. Iesan - Thermoelastic models of continua, Kluwer Academic
Publishers, Dordrecht, 2004;

@ B. Straughan - Stability and wave motion in porous media. Applied
Mathematical Sciences, vol. 165, Springer-Verlag, 2008.
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Basic equations

The fundamental equations of the poroelastic model in concern consists of:
the evolution equations

er,r + va == qu (21)
hii+ g+ ol = ok (2.2)

in © x (0, c0), the constitutive equations
Srs = Crsmn€mn + BrsQO + DrskSO,k
hi = Aij‘P,/‘ + Dygieps + dip

8 = —B[je,j — £g0 - dl'gﬁ,,‘ (23)

in Q x [0, ), the geometrical equations

Cry = E (ur,s + us,r) )

in Q x [0, ).
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In terms of the displacement and volume fraction fields, the basic equations,
for a homogeneous and isotropic body, become

,U,Al/li + ()\ + u) Uj jj + b(,OJ‘ + Qb,‘ = Ql'l,', (25)
alAp —buj; — Ep + ol = oK. (2.6)

while the specific internal energy e is given by

1
pe = EAerresx + Heijeij + Zb@err + 5%02 + P P r- (27)

The specific internal energy is positive definite in terms of e;; and ¢ if and
only if

>0, a>0, £>0, 2u+3XA>0, (2u+3\)¢&>30%  (2.8)
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State of plane strain
We consider the plane strain, parallel to the x;, x,-plane, characterized by
Uy = Ug (X1,X%2), u3 =0, p=p(x,x), (x,xn) €. (3.1
It follows that the non-zero strain measures are given by
1
eqp = 5 (uaﬁ + uﬁ’a) . 3.2)

The non-zero dependent constitutive variables are t,3, h, and g and,
moreover, we have

tap = Nepplap + 2ueqs + BPdas, (3.3)
hy =ap,, (3.4
g = —Peyp = Ep. (3.5)
The equations of equilibrium reduce to
t3a,8 +Fa =0, hy,+g+G=0 on X. (3.6)

The non-zero surface tractions acting at a point x on the curve I are given by

Io = 1303, h = hyng, 3.7k :

where n, = cos (ny, x,) and n, is the unit vector of the outward normal to I’

s
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For convenience we have to note that the state of plane strain has to satisfy
the following compatibility condition

e, +exnir —2epn =0. (3.8)

The constitutive equations can be written as

A+2
ey = 24 I — I — P,
dp (A +p) dp (A + p) 2(A+p)
en = — h + At 2u ty — b
2T T T Ot T 200w
1
e = —Ip. (3.9)

2
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Formulation of problem in terms of the Airy stress

function and volume fraction
Throughout this section a rectangular region R : 0 < x; < L, 0 < x, < £ is
considered. It is supposed to be occupied by an isotropic and homogeneous
poroelastic material in an equilibrium state of plane strain, the edges x; = L,

x; = 0, /¢, being traction-free, the remaining edge being (necessarily) subject
to a self-equilibrated load.

The Airy stress function A (x1, x,) is introduced to simplify the analysis, and
is such that the (relevant) stress components #11, ¢, and f»; are given by

m=An, th=A1n., hh=—-An. 4.1

The plane equilibrium equations and the compatibility equation give for the
Airy stress function A (x1,x,) and the volumetric ratio ¢ (x1, x;)

2p0
At 4+ 2A 1130+ Ay — 12 —0, @2
i+ 2A 0122 + A N+ 2 (.11 +¢2) 4.2)

2 S
al(enn +omn)— (E - Aiu) w = Z(Ai ) (A1 +Axn)=0. (4~3
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The foregoing equations hold in the rectangular region R, while on its
boundary the arbitrariness inherent in A (x,x,) may be used to give the
simplified boundary conditions

A=A,=0 ontheedges x, =0,/ 4.4)
and
A=A,=0 ontheedge x; =L, 4.5)

in the case of a finite strip. As regards the volumetric fraction we will
consider either

¢ =0 ontheedges x, =0 and x;, =/, (4.6)

or
p2 =0 ontheedges x, =0 and x, = ¢ 4.7

and
¢ =0 ontheedge x; =L,

when a finite strip is considered. In the limiting case when L — oo
conditions (4.5) and (4.8) are unnecessary.




1. Poroelastic materials 2. Thermoelastic materials with voids 3. States of plane strain and stress A homogeneous rectangular strip An inhomogeneous rectangular strip

‘We introduce the function

‘ 2000 (A +
I(x) = /0 |:(AA71] + A%+ A) + M(pz dxy—
2up
/RX] X+ 24 (Apy — Arp)da, x €[0,L], (4.9)

and note that

1 ‘ dap (A + p)
E (x1) = /0 {A,zll + 2¢4,212 + A,222 + W (90’21 + QD?Z) +
4
DY :;M [€ A+ p) = 5] 902} dx; >0 forall x; € [0,L].  (4.10)

A
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In view of the end boundary conditions, we deduce that I (L) = 0 and
dl (1) = 0. Then the relation (4.10) implies

dx|
di Aoy (N + )
dxs (x1) = — /RKl [A,zn + 2A,212 + A,222 + YT (90,21 + <P,22) +
4
+5 +M2u (€N +p) — 3] @2} da <0 forall x; € [0,L], 4.11)

and

dap (A +p)

2 2
Nt 2 (<P,1 + %0,2) +

L
I(.XI) - / d'f]/ |:A,211 + 2./47212 + A7222 +
X1 R77

4p
A2

This proves that / (x1) is a measure of the solution (A, ).

_|_

(€N +p) — 5] @2] da >0 forall x; € [0,L]. (4.12)
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On the other hand, we obtain the following second-order differential

inequality
d’1 s dl 1
— - — — —1 >0 forall 0,L 4.13
e (x1) o v, (x1) - (x1) >0 forall x; € [0,L],  (4.13)
where
Bl 2u l 1
= max ) ,  (4.14)
dm | A+2p m2a(N+p) EA+p) =52

B ¢? a(A+p)
o =mes (o S ) o

A homogeneous rectangular strip  An inhomogeneous rectangular strip A
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By a well-known Comparison Principle, it follows that 7 (x; ) is bounded
above by the solution of the differential equation corresponding to the
differential inequality (4.13) with the same boundary conditions, that is the
function G (x;) satisfying

de pal dG 1
— - —— - —G =0 forall 0,L 4.16
dx% ()C]) 0 dxl ()C]) 0 ()C]) orall xj E[ ) ]a ( )
with
G0)=1(0), G(L)y=1I(L). 4.17)
On this basis we obtain
1 — e~ () (L—x) N e~ (ntr)x
—1x —vi(L—x1)
0<1I(x)< =) I(0)e +1_67(V1+V2)LI L)e <
<I(0)e ™ +1(L)e ™ E) forall x; € [0,L], (4.18)
where
1 2 1 2
vi=— sty +dr |, V2 =7— —%1+m .
2%2 2%2
4.19)

Thus, we have

0<I(x;) <I(0)e ™" forall x; €[0,L].
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Throughout this section we suppose the strip to be occupied by a smoothly
varying inhomogeneous isotropic poroelastic material in an equilibrium state
of plane strain under self—equilibrated traction and equilibrated force applied
on the edge x; = 0, while the other three edges x; = L, x, = 0, x, = £ are
traction free and subjected to zero volumetric fraction or zero equilibrated
force. We introduce the notations

A+ 24 A 3

TH0ew Twtrw T 20ww O

and we will consider the following types of inhomogeneities:
(i) €, €, a, £ and 7 are smooth functions of x|, when the differential system is
substituted by the following one

(6“4,11),11 +2 (6-’4712)712 + (6-’4,22)722 —e"An - (7-90),11 - (7-90),22 =0,

272

€— &

()  +(app) ,— (f - ) o—T(A1n+Axn)=0, in Ry, (5.2)

where a prime is used to denote the derivative with respect to x;;
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(i) €, €, a, £ and T are smooth functions of x,, when the differential system
is substituted by the following one

(GA,II),U +2 (6A,12)712 + (EA,22)722 —EAn - (790),11 - (790),22 =0,

207 2
(a@71)’1+(ag072) <f - ) o—T(An+Ax»n)=0, in Ry, (5.3)

where a superposed dot denotes the derivative with respect to x;.
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Inhomogeneous poroelastic material of type (i)

We introduce the function

¢
J(x) = / [e (—AA 5+ A’zl + A?z) + 1A+ %QDZ] dx,+
0

+/ [e’ (A% + AL) +210A + O;goz] da, x; €10,L], 5.4
R

X1

and note that we have

d*J ‘ 2 2 2 2 272 2
ﬁ(x.)z € (A% +2A4%) +a (@) +¢5%) + [ £ - — ¥+
X1 0 €—¢
4 2
N (8,, + ;e) Ag} dy > 0, (5.5)
provided
1 472
> *KTE
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Further, we have

L ) 2
I () = / d”/ [E (A% +2A4%) +a (e +93) + (5 - ) o>+
X1 R,

€— &

2
+(€”+4; )Az]da>0 (5.7)

The constitutive restriction (5.6) is assumed - as a minimum - henceforward,
and, in these circumstances, the positive definiteness referred to, qualifies
(5.7) as a suitable global measure of solution in R,,.

We can determine the positive parameters J and ~y so that

2
d—{ (x1) — ’yﬂ (x1) —0J (x1) >0 forall x; € [0,L], (5.8)
dxl d X1

provided appropriate assumptions are imposed on the elastic coefficients.
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In fact, we set

0 < § < min < 1z ,51,52) 5.9)
where m
8, = min (j,mg) (5.10)
€' 4an? 2 ( 272
m = min —+ — >0, m = min — —
xel0Ll € 22 xef0Ll o €—¢

L 1 ﬁ B 272 B 272
62):121[})1]{(6 + 2 ¢ €—¢ Fels €—¢
272 o, 4’ e
+\/H§‘e_5)‘4( wﬂ ﬂw(f‘e_g
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and +y is so that

v > 0 max (717727’73774) B (5]3)
where
Y1 = max ﬁ 2:£ max ‘6/‘ Y3 = 1 ﬂ
X €[0,2] g~+4T7;26’ 272 yefor] € 2x|€[0L]§ 272 ’

S— 1 e 22 4 Ty
=— — |- — — ¢
Ralre) nepl] | . (§ _ 2772) €—¢ 02

272 2 2 gr2 272
+ |:6/(§—€T€>—72260/:| +;Tze<§—678> . (5.14)
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Thus, we have
0<J(x)<J(0)e " forall x, €[0,L], (5.15)
where

Vi = % (—7 /2 +45) . (5.16)

Such estimate is possible only if the relation (5.11) holds true!
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Application to functionally graded materials
As an example, we consider a poroelastic material essentially characterized

by
€ (X1) = E()efl’xl7 c (Xl) = goeﬂwq7 a (xl) _ A()e*px‘,

T (x1) = Toe P, & = Xpe P, (5.17)

where Ey, Ay, Xo, eg and Ty are prescribed constants. Then we have
1
Ey>0, Ag>0, Xo>0, Eg—eo>0, Tg< EX0 (Eo —ep) (5.18)

and
2

4
ey > _WEO (519)

and we can take
272 27?2 pley 2 212 4n?
O<d<min|—,— +=—,— | Xo— 0 , 2 —FE) ) -
mln( 62 62 + ZE() A() ( 0 E()e()> |:<p ¢+ 52 2 0)
277 277 Ao 4
| X0 — 0 Eo [ Xo — 0 — E
(0 Eo—eon/{()(() Eo—€0>+4<peo+€220>

272 Ao 4772 :
Eo [ Xy — 0
(8 (- 5220 ) - (Pt ) ) +

+
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and
s omax | PP Pl PAo e .
2 ) ) )
peo + %EO 272 2 (XO — EoTéeo) 472E (X() — Eiii())
s pA()EQ 2T&
. Eo | Xo — —%—
[ £2 P ( 0 E() — €0 +

72pAoEy 212 \1* . 8m2T2E, 212
TPR0Z0 bEy [ Xo — Xp— ——0
+\/[ 2 PRo\ 20 Ey— e * (2 " E—eo
52
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An arch-like region

We consider a curvilinear strip of the form of an arch-like region R, which in
polar coordinates r and @ is described by

R:a<r<b, 0<6<w. 6.1)

Here a, b and w (< 27) are prescribed positive constants.

The curvilinear strip is made of a homogeneous and isotropic elastic material
with voids and is subject to zero body force and zero equilibrated force. The
right edge 6 = 0 is subject to a prescribed self-equilibrated traction and an
equilibrated force, while the other three edges 6 = w, r = a and r = b are
traction free and subjected to zero volume fraction or zero equilibrated force.
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If u, and uy are the radial and transversal components of the plane
displacement vector in a plane polar reference frame, then the geometrical
measures of deformation are

ou, 1 (l Ou, Oug 1 >
€r = [y €ro = + = — —Uup
,

or 2\r oo = or
o 1 8”9
€pp = ; <69 + I/tr> (62)

By eliminating u, and uy in the above relation we obtain the Saint-Venant
compatibility condition in the form

82

0? 0 0?
rw (”696) + (802 — rar> € — ZM (rerg) =0 (63)

neous rectangular strip A
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The constitutive equations are

Trr = ()\ + 2,“/) ey + Negg + ﬁ‘P
T = )\err + ()‘ + 2#) egp + 530 (64)
Tro = Zﬂera

_ 0p _ady
e =az, 0= 00 6.5
8= *ﬂ (err+399) *630'

Relation (6.4) can be written as

€y = €Ty — ETHY — NP
egg = —ETp + €Tpy — NP (6.6)
(e+¢€)To

€r
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The equilibrium equations corresponding to a plane strain state (u;, ug, ©)

reduce to
aTrr l aTrO — To0 -0
or r 00 r -
07,9 1 (97'99 2
or Trop Ty =0 ©D
10 1 Ohyg
ra(h)Jr 0 +g=0 (6.8)

and the state of plane stress is represented in terms of the Airy stress
function A by

1A 104
=29 T or
0?A
T — W (69)

B 18.A
o= 3r r o0
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The basic equations for the Airy stress function .4 and the volume fraction ¢
are

P PA P (LFAY P (1PA 0 (104
“1"ar2 \" 972 "oro0 \raro0) Toar \2 o2 ) "ar \+ or

482,4}#(8299 1 0%p 1a¢>0

T o T e T (6.10)

Pp 10  10¢ P?A 19PA 10A
a<8ﬂ+r2802+rc‘)r>_n(ar2+r2802+r8r)_(5_26”)¢_0
(6.11)

Concerning the above differential system we will consider two different
boundary value problems.
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Problem A

Here we consider the edge 8 = 0 to be subjected to a given traction, while
the other three edges are free of tractions, that is we have the following
boundary conditions

0A 0A

Al(a,0) = o (a,0) =0, A(b,0) = o (b,0) =0, 0€[0,w] (6.12)
A(r,w) = %—? (r,w) =0, r€a,b (6.13)
r 18 r

A0 = [ = 0o 0.0 e, 500 == [ 5 (0.00d

‘ ‘ (6.14)
¢ (a,0) =@ (b,0) =0, 0€l0,u]

p(r,w)=0, re€la,b (6.15)
o (r,0)=f(r), r€la,b (6.16)

where the applied self-equilibrated tractions 7,¢(p, 0) and 79¢(p, 0) satisfy % ﬁ
the conditions of global equilibrium.




1. Poroelastic materials 2. Thermoelastic materials with voids 3. States of plane strain and stress A homogeneous rectangular strip - An inhomogeneous rectangular strip A

Problem B

Here we consider the edge r = a to be subjected to a prescribed traction,
while the other three edges are free of loads, that is we associate with the
differential system the following boundary conditions

A(r,0) = % (r,0) =0, A(r,w) = % (r,w) =0, r€la,b] (6.17)
A(b,0) = % (b,6) =0, 6 l0,u] (6.18)

0 s
Ala,d) = az/ [7-,, (a,s) + / 70 (a,0) da] sin (0 — s) ds
0 0
OA 0 s 0
— (a,0) = a/ |:T,, (a,s) + / 70 (a,0) da} sin (0 — s) dsfa/ 70 (a,0) do
or 0 Jo 0
(6.19)

where the applied self-equilibrated tractions 7,,(a, ) and 7,4 (a, o) satisfy
the global equilibrium conditions.




1. Poroelastic materials 2. Thermoelastic materials with voids 3. States of plane strain and stress A homogeneous rectangular strip An inhomogeneous rectangular strip A

As regards the volumetric fraction we will consider

cp(r,O)ch(r,w)zO, l"E[a,b]
o (b,0) =0, 6€0,u] (6.20)

¥ (aa 9) =80 (9) ’ b€ [Oa w] (621)

To study the spatial behavior, we use the change of variable
r=eée (6.22)
and the following change of functions

A(r,0) =€y (1,0), ¢(r.0)=0¢(1,0) (6.23)
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For Problem A we introduce the following functional
by 321/1 2 821/1 2 (3'21/1 2 81/}
E®) _/al {6 l(aﬂ) 2 (8t89) N <892 “Z’) 2 < a;)
06\  [06\*
(&) (%)

and note that we can determine the positive constants y; and -, in order to
be satisfied the following second-order differential inequality

+a

+ (€ = 26n) e2’¢2} dr (6.24)

d*€ dé
< P —_ _— .
E0) <m 02 @) — 7 7 (9) forall 0 € [0,w] (6.25)

Thus, we get the following estimate

E(0) <E(0)e ™Y forall 6 € [0,w]
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For Problem B we introduce the following functional

F (1) =/Ow {e [(%Z;f)zﬂtz <§:§;>z+ (g?f)2+2(%f>2—2<?§>2+f
(%)« (5)

and we can establish the following differential inequality

+a

+(§—2ﬂn)e2’¢2}d0, t€lai,bi]  (6.27)

d*F dF
Fr) < Xt (1) — X2 - (r) forall 7€ [ay,b] (6.28)

where

1 = max 13, Ul || n o
2172 2 /e(€—2Bn) 2\/e(E —2Bn)  2e* (£ —20n)

2| Ul .
- , 6.2 %
X = e €(&—2pn) (g—i + 1) € (&£ —20n) ( %f
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By applying the Comparison Principle to the above differential inequality,
we obtain the following estimate

0< F(1) < Fla)e =) forall 1€ [ay,b] (6.30)

1
_ /.2
) = Y ( X2 + 14/ X5 +4X1> (6.31)

In terms of the initial variables (r, #), the decay estimate (6.30) can be
written as follows

where

0< Fi(r) < Fi(a) (%)% forall r € [a, b] (6.32)

where by
Fi(r) = / EFI (Ins) ds (6.33)

b
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provided the angle w is so that

0<w<mV2. (6.35)

The present contribution is based upon the papers written jointly with
Professor Ciro D’ Apice of the University of Salerno, Italy:

@ C. D’Apice and S. Chiritd, On Saint-Venant principle for a linear
poroelastic material in plane strain. Journal of Mathematical Analysis
and Applications, vol. 363, pp. 454-467, 2010.

@ S. Chiritd and C. D’ Apice, On Saint Venant’s principle in a poroelastic
arch-like region. Mathematical Methods in the Applied Science Article
first published online: 11 MAR 2010 DOI: 10.1002/mma.1294.
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