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The mathematical model

I Theory of thermoelastic materials with voids was developed by

S. C. Cowin and J. W. Nunziato - Linear elastic materials with voids, J.
Elasticity, vol. 13, pp. 125-147, 1983

J. W. Nunziato and S. C. Cowin - A nonlinear theory of elastic
materials with voids, Arch. Rat. Mech. Anal., vol. 72, pp. 175-201, 1979

D. Ieşan - A theory of thermoelastic materials with voids, Acta
Mechanica, vol. 60, pp. 67-89, 1986

in order to describe deformation of elastic bodies with small voids or
vacuous pores which are distributed throughout the material. Such theory is
one of the simple extensions of the classical theory of elasticity for the
treatment of porous solids in which the matrix material is elastic and the
interstices are void of material.
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The theory of thermoporoelastic materials was intensively studied in the last
years. An overview state of art can be found in the following books:

R. De Boer - Theory of porous media: Highlights in historical
development and current state. Springer-Verlag, Berlin, 1999;

D. Ieşan - Thermoelastic models of continua, Kluwer Academic
Publishers, Dordrecht, 2004;

B. Straughan - Stability and wave motion in porous media. Applied
Mathematical Sciences, vol. 165, Springer-Verlag, 2008.
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Basic equations

The fundamental equations of the poroelastic model in concern consists of:
the evolution equations

Srs,r + ρbs = %üs (2.1)

hi,i + g + %` = %κϕ̈ (2.2)

in Ω× (0,∞), the constitutive equations

Srs = Crsmnemn + Brsϕ+ Drskϕ,k

hi = Aijϕ,j + Drsiers + diϕ

g = −Bijeij − ξϕ− diϕ,i (2.3)

in Ω̄× [0,∞), the geometrical equations

ers =
1
2

(ur,s + us,r) , (2.4)

in Ω̄× [0,∞).
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In terms of the displacement and volume fraction fields, the basic equations,
for a homogeneous and isotropic body, become

µ∆ui + (λ+ µ) uj,ij + bϕ,i + %bi = %üi, (2.5)

α∆ϕ− buj,j − ξϕ+ %` = %κϕ̈. (2.6)

while the specific internal energy ε is given by

ρε =
1
2
λerress + µeijeij + 2bϕerr + ξϕ2 + αϕ,rϕ,r. (2.7)

The specific internal energy is positive definite in terms of eij and ϕ if and
only if

µ > 0, α > 0, ξ > 0, 2µ+ 3λ > 0, (2µ+ 3λ) ξ > 3b2. (2.8)
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State of plane strain
We consider the plane strain, parallel to the x1, x2-plane, characterized by

uα = uα (x1, x2) , u3 = 0, ϕ = ϕ (x1, x2) , (x1, x2) ∈ Σ. (3.1)

It follows that the non-zero strain measures are given by

eαβ =
1
2

(uα,β + uβ,α) . (3.2)

The non-zero dependent constitutive variables are tαβ , hα and g and,
moreover, we have

tαβ = λeρρδαβ + 2µeαβ + βϕδαβ , (3.3)

hρ = αϕ,ρ (3.4)
g = −βeρρ − ξϕ. (3.5)

The equations of equilibrium reduce to

tβα,β + Fα = 0, hρ,ρ + g + G = 0 on Σ. (3.6)

The non-zero surface tractions acting at a point x on the curve Γ are given by

tα = tβαnβ , h = hαnα, (3.7)

where nα = cos (nx, xα) and nx is the unit vector of the outward normal to Γ
at x.
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For convenience we have to note that the state of plane strain has to satisfy
the following compatibility condition

e11,22 + e22,11 − 2e12,12 = 0. (3.8)

The constitutive equations can be written as

e11 =
λ+ 2µ

4µ (λ+ µ)
t11 −

λ

4µ (λ+ µ)
t22 −

β

2 (λ+ µ)
ϕ,

e22 = − λ

4µ (λ+ µ)
t11 +

λ+ 2µ
4µ (λ+ µ)

t22 −
β

2 (λ+ µ)
ϕ,

e12 =
1

2µ
t12. (3.9)
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Formulation of problem in terms of the Airy stress
function and volume fraction

Throughout this section a rectangular region R : 0 < x1 < L, 0 < x2 < ` is
considered. It is supposed to be occupied by an isotropic and homogeneous
poroelastic material in an equilibrium state of plane strain, the edges x1 = L,
x2 = 0, `, being traction-free, the remaining edge being (necessarily) subject
to a self-equilibrated load.
The Airy stress function A (x1, x2) is introduced to simplify the analysis, and
is such that the (relevant) stress components t11, t12 and t22 are given by

t11 = A,22, t22 = A,11, t12 = −A,12. (4.1)

The plane equilibrium equations and the compatibility equation give for the
Airy stress function A (x1, x2) and the volumetric ratio ϕ (x1, x2)

A,1111 + 2A,1122 +A,2222 −
2µβ
λ+ 2µ

(ϕ,11 + ϕ,22) = 0, (4.2)

α (ϕ,11 + ϕ,22)−
(
ξ − β2

λ+ µ

)
ϕ− β

2 (λ+ µ)
(A,11 +A,22) = 0. (4.3)
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The foregoing equations hold in the rectangular region R, while on its
boundary the arbitrariness inherent in A (x1, x2) may be used to give the
simplified boundary conditions

A = A,2 = 0 on the edges x2 = 0, `, (4.4)

and
A = A,1 = 0 on the edge x1 = L, (4.5)

in the case of a finite strip. As regards the volumetric fraction we will
consider either

ϕ = 0 on the edges x2 = 0 and x2 = `, (4.6)

or
ϕ,2 = 0 on the edges x2 = 0 and x2 = ` (4.7)

and
ϕ = 0 on the edge x1 = L, (4.8)

when a finite strip is considered. In the limiting case when L→∞
conditions (4.5) and (4.8) are unnecessary.
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We introduce the function

I (x1) =
∫ `

0

[(
−AA,11 +A2

,1 +A2
,2

)
+

2αµ (λ+ µ)
λ+ 2µ

ϕ2
]

dx2−

−
∫

Rx1

2µβ
λ+ 2µ

(Aϕ,1 −A,1ϕ) da, x1 ∈ [0,L], (4.9)

and note that

d2I
dx2

1
(x1) =

∫ `

0

{
A2
,11 + 2A2

,12 +A2
,22 +

4αµ (λ+ µ)
λ+ 2µ

(
ϕ2
,1 + ϕ2

,2

)
+

+
4µ

λ+ 2µ
[
ξ (λ+ µ)− β2]ϕ2

}
dx2 ≥ 0 for all x1 ∈ [0,L]. (4.10)
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In view of the end boundary conditions, we deduce that I (L) = 0 and
dI
dx1

(L) = 0. Then the relation (4.10) implies

dI
dx1

(x1) = −
∫

Rx1

[
A2
,11 + 2A2

,12 +A2
,22 +

4αµ (λ+ µ)
λ+ 2µ

(
ϕ2
,1 + ϕ2

,2

)
+

+
4µ

λ+ 2µ
[
ξ (λ+ µ)− β2]ϕ2

]
da ≤ 0 for all x1 ∈ [0,L], (4.11)

and

I (x1) =
∫ L

x1

dη
∫

Rη

[
A2
,11 + 2A2

,12 +A2
,22 +

4αµ (λ+ µ)
λ+ 2µ

(
ϕ2
,1 + ϕ2

,2

)
+

+
4µ

λ+ 2µ
[
ξ (λ+ µ)− β2]ϕ2

]
da ≥ 0 for all x1 ∈ [0,L]. (4.12)

This proves that I (x1) is a measure of the solution (A, ϕ).
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On the other hand, we obtain the following second-order differential
inequality

d2I
dx2

1
(x1)− κ1

κ2

dI
dx1

(x1)− 1
κ2

I (x1) ≥ 0 for all x1 ∈ [0,L], (4.13)

where

κ1 =
` |β|
4π

√
2µ

λ+ 2µ
max

(
`

π
√

2α (λ+ µ)
,

1
ξ (λ+ µ)− β2

)
, (4.14)

κ2 = max
(
`2

2π2 ,
α (λ+ µ)

2 [ξ (λ+ µ)− β2]

)
. (4.15)
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By a well-known Comparison Principle, it follows that I (x1) is bounded
above by the solution of the differential equation corresponding to the
differential inequality (4.13) with the same boundary conditions, that is the
function G (x1) satisfying

d2G
dx2

1
(x1)− κ1

κ2

dG
dx1

(x1)− 1
κ2

G (x1) = 0 for all x1 ∈ [0,L], (4.16)

with
G (0) = I (0) , G (L) = I (L) . (4.17)

On this basis we obtain

0 ≤ I (x1) ≤ 1− e−(ν1+ν2)(L−x1)

1− e−(ν1+ν2)L I (0) e−ν2x1+
1− e−(ν1+ν2)x1

1− e−(ν1+ν2)L I (L) e−ν1(L−x1) ≤

≤ I (0) e−ν2x1 + I (L) e−ν1(L−x1) for all x1 ∈ [0,L], (4.18)
where

ν1 =
1

2κ2

(
κ1 +

√
κ2

1 + 4κ2

)
, ν2 =

1
2κ2

(
−κ1 +

√
κ2

1 + 4κ2

)
.

(4.19)
Thus, we have

0 ≤ I (x1) ≤ I (0) e−ν2x1 for all x1 ∈ [0,L]. (4.20)
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Throughout this section we suppose the strip to be occupied by a smoothly
varying inhomogeneous isotropic poroelastic material in an equilibrium state
of plane strain under self–equilibrated traction and equilibrated force applied
on the edge x1 = 0, while the other three edges x1 = L, x2 = 0, x2 = ` are
traction free and subjected to zero volumetric fraction or zero equilibrated
force. We introduce the notations

ε =
λ+ 2µ

4µ (λ+ µ)
, ε =

λ

4µ (λ+ µ)
, τ =

β

2 (λ+ µ)
(5.1)

and we will consider the following types of inhomogeneities:
(i) ε, ε, α, ξ and τ are smooth functions of x1, when the differential system is
substituted by the following one

(εA,11),11 + 2 (εA,12),12 + (εA,22),22 − ε
′′A,22 − (τϕ),11 − (τϕ),22 = 0,

(αϕ,1),1 +(αϕ,2),2−
(
ξ − 2τ 2

ε− ε

)
ϕ−τ (A,11 +A,22) = 0, in R0, (5.2)

where a prime is used to denote the derivative with respect to x1;
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(ii) ε, ε, α, ξ and τ are smooth functions of x2, when the differential system
is substituted by the following one

(εA,11),11 + 2 (εA,12),12 + (εA,22),22 − ε̈A,11 − (τϕ),11 − (τϕ),22 = 0,

(αϕ,1),1 +(αϕ,2),2−
(
ξ − 2τ 2

ε− ε

)
ϕ−τ (A,11 +A,22) = 0, in R0, (5.3)

where a superposed dot denotes the derivative with respect to x2.
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Inhomogeneous poroelastic material of type (i)
We introduce the function

J (x1) =
∫ `

0

[
ε
(
−AA,11 +A2

,1 +A2
,2

)
+ τϕA+

α

2
ϕ2
]

dx2+

+
∫

Rx1

[
ε′
(
A2
,1 +A2

,2

)
+ 2τϕA,1 +

α′

2
ϕ2
]

da, x1 ∈ [0,L], (5.4)

and note that we have

d2J
dx2

1
(x1) ≥

∫ `

0

[
ε
(
A2
,11 + 2A2

,12

)
+ α

(
ϕ2
,1 + ϕ2

,2

)
+
(
ξ − 2τ 2

ε− ε

)
ϕ2+

+
(
ε′′ +

4π2

`2 ε

)
A2
,2

]
dx2 ≥ 0, (5.5)

provided

ε′′ ≥ −4π2

`2 ε. (5.6)
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Further, we have

J (x1) ≥
∫ L

x1

dη
∫

Rη

[
ε
(
A2
,11 + 2A2

,12

)
+ α

(
ϕ2
,1 + ϕ2

,2

)
+
(
ξ − 2τ 2

ε− ε

)
ϕ2+

+
(
ε′′ +

4π2

`2 ε

)
A2
,2

]
da ≥ 0. (5.7)

The constitutive restriction (5.6) is assumed - as a minimum - henceforward,
and, in these circumstances, the positive definiteness referred to, qualifies
(5.7) as a suitable global measure of solution in Rx1 .
We can determine the positive parameters δ and γ so that

d2J
dx2

1
(x1)− γ dJ

dx1
(x1)− δJ (x1) ≥ 0 for all x1 ∈ [0,L], (5.8)

provided appropriate assumptions are imposed on the elastic coefficients.
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In fact, we set

0 < δ < min
(

2π2

`2 , δ1, δ2

)
, (5.9)

where
δ1 = min

(m1

2
,m2

)
(5.10)

m1 ≡ min
x1∈[0,L]

ε′′

ε
+

4π2

`2 > 0, m2 ≡ min
x1∈[0,L]

2
α

(
ξ − 2τ 2

ε− ε

)
> 0, (5.11)

δ2 = min
x1∈[0,L]

{(
ε′′ +

4π2

`2 ε

)(
ξ − 2τ 2

ε− ε

)
/

[
ε

(
ξ − 2τ 2

ε− ε

)
+
α

4

(
ε′′ +

4π2

`2 ε

)
+

+

√[
ε

(
ξ − 2τ 2

ε− ε

)
− α

4

(
ε′′ +

4π2

`2 ε

)]2

+
`2τ 2

4π2

(
ξ − 2τ 2

ε− ε

)(
ε′′ +

4π2

`2 ε

)
(5.12)
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and γ is so that
γ > δmax (γ1, γ2, γ3, γ4) , (5.13)

where

γ1 = max
x1∈[0,L]

|ε′|
ε′′ + 4π2

`2 ε
, γ2 =

`2

2π2 max
x1∈[0,L]

|ε′|
ε
, γ3 =

1
2

max
x1∈[0,L]

|α′|
ξ − 2τ 2

ε−ε
,

γ4 =
`2

4π2 max
x1∈[0,L]

 1

ε
(
ξ − 2τ 2

ε−ε

) [ε′(ξ − 2τ 2

ε− ε

)
+
π2

`2 εα
′+

+

√[
ε′
(
ξ − 2τ 2

ε− ε

)
− π2

`2 εα
′
]2

+
8π2

`2 τ 2ε

(
ξ − 2τ 2

ε− ε

) . (5.14)
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Thus, we have

0 ≤ J (x1) ≤ J (0) e−ν
∗
2 x1 for all x1 ∈ [0,L], (5.15)

where
ν∗2 =

1
2

(
−γ +

√
γ2 + 4δ

)
. (5.16)

Such estimate is possible only if the relation (5.11) holds true!
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Application to functionally graded materials
As an example, we consider a poroelastic material essentially characterized
by

ε (x1) = E0e−px1 , ε (x1) = e0e−px1 , α (x1) = A0e−px1 ,

τ (x1) = T0e−px1 , ξ = X0e−px1 , (5.17)
where E0, A0, X0, e0 and T0 are prescribed constants. Then we have

E0 > 0, A0 > 0, X0 > 0, E0 − e0 > 0, T2
0 <

1
2

X0 (E0 − e0) (5.18)

and

e0 > −
4π2

`2p2 E0. (5.19)

and we can take

0 < δ < min
(

2π2

`2 ,
2π2

`2 +
p2e0

2E0
,

2
A0

(
X0 −

2T2
0

E0 − e0

)
,

[(
p2e0 +

4π2

`2p2 E0

)
·

·
(

X0 −
2T2

0

E0 − e0

)]
/

{
E0

(
X0 −

2T2
0

E0 − e0

)
+

A0

4

(
p2e0 +

4π2

`2p2 E0

)
+

+

[(
E0

(
X0 −

2T2
0

E0 − e0

)
− A0

4

(
p2e0 +

4π2

`2p2 E0

))2

+

+
`2T2

0

4π2

(
X0 −

2T2
0

E0 − e0

)(
p2e0 +

4π2

`2p2 E0

)]1/2
})

(5.20)
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and

γ > δmax

 pE0

p2e0 + 4π2

`2 E0
,

p`2

2π2 ,
pA0

2
(

X0 −
2T2

0
E0−e0

) , `2

4π2E0

(
X0 −

2T2
0

E0−e0

) ·
·
[
−π

2pA0E0

`2 − pE0

(
X0 −

2T2
0

E0 − e0

)
+

+

√[
π2pA0E0

`2 − pE0

(
X0 −

2T2
0

E0 − e0

)]2

+
8π2T2

0 E0

`2

(
X0 −

2T2
0

E0 − e0

) .

(5.21)
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An arch-like region

We consider a curvilinear strip of the form of an arch-like region R, which in
polar coordinates r and θ is described by

R : a < r < b, 0 < θ < ω. (6.1)

Here a, b and ω (< 2π) are prescribed positive constants.
The curvilinear strip is made of a homogeneous and isotropic elastic material
with voids and is subject to zero body force and zero equilibrated force. The
right edge θ = 0 is subject to a prescribed self-equilibrated traction and an
equilibrated force, while the other three edges θ = ω, r = a and r = b are
traction free and subjected to zero volume fraction or zero equilibrated force.
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If ur and uθ are the radial and transversal components of the plane
displacement vector in a plane polar reference frame, then the geometrical
measures of deformation are

err =
∂ur

∂r
, erθ =

1
2

(
1
r
∂ur

∂θ
+
∂uθ
∂r
− 1

r
uθ

)
eθθ =

1
r

(
∂uθ
∂θ

+ ur

)
(6.2)

By eliminating ur and uθ in the above relation we obtain the Saint-Venant
compatibility condition in the form

r
∂2

∂r2 (reθθ) +
(
∂2

∂θ2 − r
∂

∂r

)
err − 2

∂2

∂r∂θ
(rerθ) = 0 (6.3)
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The constitutive equations are

τrr = (λ+ 2µ) err + λeθθ + βϕ

τθθ = λerr + (λ+ 2µ) eθθ + βϕ (6.4)
τrθ = 2µerθ

hr = α
∂ϕ

∂r
hθ =

α

r
∂ϕ

∂θ
(6.5)

g = −β (err + eθθ)− ξϕ.

Relation (6.4) can be written as

err = ετrr − ετθθ − ηϕ
eθθ = −ετrr + ετθθ − ηϕ (6.6)
erθ = (ε+ ε) τrθ
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The equilibrium equations corresponding to a plane strain state (ur, uθ, ϕ)
reduce to

∂τrr

∂r
+

1
r
∂τrθ

∂θ
+
τrr − τθθ

r
= 0

∂τrθ

∂r
+

1
r
∂τθθ
∂θ

+
2
r
τrθ = 0 (6.7)

1
r
∂

∂r
(rhr) +

1
r
∂hθ
∂θ

+ g = 0 (6.8)

and the state of plane stress is represented in terms of the Airy stress
function A by

τrr =
1
r2

∂2A
∂θ2 +

1
r
∂A
∂r

τθθ =
∂2A
∂r2 (6.9)

τrθ = − ∂

∂r

(
1
r
∂A
∂θ

)
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The basic equations for the Airy stress function A and the volume fraction ϕ
are

ε

[
r
∂2

∂r2

(
r
∂2A
∂r2

)
+ 2r

∂2

∂r∂θ

(
1
r
∂2A
∂r∂θ

)
+

∂2

∂θ2

(
1
r2

∂2A
∂θ2

)
− r

∂

∂r

(
1
r
∂A
∂r

)

+
4
r2

∂2A
∂θ2

]
− ηr2

(
∂2ϕ

∂r2 +
1
r2

∂2ϕ

∂θ2 +
1
r
∂ϕ

∂r

)
= 0 (6.10)

α

(
∂2ϕ

∂r2 +
1
r2

∂2ϕ

∂θ2 +
1
r
∂ϕ

∂r

)
−η
(
∂2A
∂r2 +

1
r2

∂2A
∂θ2 +

1
r
∂A
∂r

)
−(ξ − 2βη)ϕ = 0

(6.11)

Concerning the above differential system we will consider two different
boundary value problems.
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Problem A
Here we consider the edge θ = 0 to be subjected to a given traction, while
the other three edges are free of tractions, that is we have the following
boundary conditions

A (a, θ) =
∂A
∂r

(a, θ) = 0, A (b, θ) =
∂A
∂r

(b, θ) = 0, θ ∈ [0, ω] (6.12)

A (r, ω) =
∂A
∂θ

(r, ω) = 0, r ∈ [a, b] (6.13)

A (r, 0) =
∫ r

a
(r − %) τθθ (%, 0) d%,

1
r
∂A
∂θ

(r, 0) = −
∫ r

a
τrθ (%, 0) d%

(6.14)

ϕ (a, θ) = ϕ (b, θ) = 0, θ ∈ [0, ω]
ϕ (r, ω) = 0, r ∈ [a, b] (6.15)

ϕ (r, 0) = f0 (r) , r ∈ [a, b] (6.16)

where the applied self-equilibrated tractions τrθ(ρ, 0) and τθθ(ρ, 0) satisfy
the conditions of global equilibrium.



1. Poroelastic materials 2. Thermoelastic materials with voids 3. States of plane strain and stress A homogeneous rectangular strip An inhomogeneous rectangular strip A homogeneous curvilinear strip

Problem B
Here we consider the edge r = a to be subjected to a prescribed traction,
while the other three edges are free of loads, that is we associate with the
differential system the following boundary conditions

A (r, 0) =
∂A
∂θ

(r, 0) = 0, A (r, ω) =
∂A
∂θ

(r, ω) = 0, r ∈ [a, b] (6.17)

A (b, θ) =
∂A
∂r

(b, θ) = 0, θ ∈ [0, ω] (6.18)

A (a, θ) = a2
∫ θ

0

[
τrr (a, s) +

∫ s

0
τrθ (a, σ) dσ

]
sin (θ − s) ds

∂A
∂r

(a, θ) = a
∫ θ

0

[
τrr (a, s) +

∫ s

0
τrθ (a, σ) dσ

]
sin (θ − s) ds−a

∫ θ

0
τrθ (a, σ) dσ

(6.19)
where the applied self-equilibrated tractions τrr(a, σ) and τrθ(a, σ) satisfy
the global equilibrium conditions.
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As regards the volumetric fraction we will consider

ϕ (r, 0) = ϕ (r, ω) = 0, r ∈ [a, b]
ϕ (b, θ) = 0, θ ∈ [0, ω] (6.20)

ϕ (a, θ) = g0 (θ) , θ ∈ [0, ω] (6.21)

To study the spatial behavior, we use the change of variable

r = et (6.22)

and the following change of functions

A (r, θ) = etψ (t, θ) , ϕ (r, θ) = φ (t, θ) (6.23)
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For Problem A we introduce the following functional

E (θ) =
∫ b1

a1

{
ε

[(
∂2ψ

∂t2

)2

+ 2
(
∂2ψ

∂t∂θ

)2

+
(
∂2ψ

∂θ2 + ψ

)2

+ 2
(
∂ψ

∂t

)2
]

+α

[(
∂φ

∂t

)2

+
(
∂φ

∂θ

)2
]

+ (ξ − 2βη) e2tφ2

}
dt (6.24)

and note that we can determine the positive constants γ1 and γ2 in order to
be satisfied the following second-order differential inequality

E (θ) ≤ γ1
d2E
dθ2 (θ)− γ2

dE
dθ

(θ) for all θ ∈ [0, ω] (6.25)

Thus, we get the following estimate

E (θ) ≤ E (0) e−κ2θ for all θ ∈ [0, ω] (6.26)
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For Problem B we introduce the following functional

F (t) =
∫ ω

0

{
ε

[(
∂2ψ

∂t2

)2

+ 2
(
∂2ψ

∂t∂θ

)2

+
(
∂2ψ

∂θ2

)2

+ 2
(
∂ψ

∂t

)2

− 2
(
∂ψ

∂θ

)2

+ ψ2

]

+α

[(
∂φ

∂t

)2

+
(
∂φ

∂θ

)2
]

+ (ξ − 2βη) e2tφ2

}
dθ, t ∈ [a1, b1] (6.27)

and we can establish the following differential inequality

F (t) ≤ χ1
d2F
dt2 (t)− χ2

dF
dt

(t) for all t ∈ [a1, b1] (6.28)

where

χ1 = max

(
1

2τ
,

3
2

+
|η|

2
√
ε (ξ − 2βη)

,
|η|

2
√
ε (ξ − 2βη)

+
α

2e2a1 (ξ − 2βη)

)

χ2 = max

 2 |η|√
ε (ξ − 2βη)

,
|η|(

π2

ω2 + 1
)√

ε (ξ − 2βη)

 (6.29)
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By applying the Comparison Principle to the above differential inequality,
we obtain the following estimate

0 ≤ F (t) ≤ F (a1) e−κ2(t−a1) for all t ∈ [a1, b1] (6.30)

where

κ2 =
1

2χ1

(
−χ2 +

√
χ2

2 + 4χ1

)
(6.31)

In terms of the initial variables (r, θ), the decay estimate (6.30) can be
written as follows

0 ≤ F1 (r) ≤ F1 (a)
(a

r

)κ2

for all r ∈ [a, b] (6.32)

where

F1 (r) =
∫ b

r

1
s

F1 (ln s) ds (6.33)

F1 (s) =
∫ b1

s
F (σ) dσ (6.34)
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provided the angle ω is so that

0 < ω < π
√

2. (6.35)

The present contribution is based upon the papers written jointly with
Professor Ciro D’Apice of the University of Salerno, Italy:

C. D’Apice and S. Chiriţă, On Saint-Venant principle for a linear
poroelastic material in plane strain. Journal of Mathematical Analysis
and Applications, vol. 363, pp. 454–467, 2010.

S. Chiriţă and C. D’Apice, On Saint Venant’s principle in a poroelastic
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first published online: 11 MAR 2010 DOI: 10.1002/mma.1294.
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